Addition Strategies: Adding 10

The +10 facts are some of the most useful facts you will learn. Fortunately, they are also some of the easiest to remember! For 1-9, you just put a 1 in the 10s place! You can use the Base 10 blocks or two 10 -frames to get a feel for it. The chart below shows how it works.

1	2	3		$\begin{array}{cc} & 5 \\ \square & \square \\ \square & \square \end{array}$	6		$\begin{gathered} 8 \\ \square \\ \square \\ \square \\ \square \\ \square \end{gathered}$		
$1+10=11$ \square	$2+10=12$	$3+10=13$	$4+10=14$	$\begin{aligned} & 5+10=15 \\ & B \square \end{aligned}$	$6+10=16$	$7+10=17$	$8+10=18$	$\begin{aligned} & 9+10=19 \\ & \forall \\ & \forall \square \\ & \forall \\ & \square \\ & \square \\ & \square \end{aligned} \square$	$10+10=20$

Hint: Sometimes it is fun to think of eleven as "one-teen," twelve as "two-teen," thirteen as "three-teen," etc. to get the hang of it. If you think of everything as a "teen" it's easy to remember the answers when you are adding ten.

Learning the $\mathbf{+ 1 0}$ facts is pretty easy, and you can use these facts to help you figure out other facts!

$\mathbf{+}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	$0+0=0$	$1+0=1$	$2+0=2$	$3+0=3$	$4+0=4$	$5+0=5$	$6+0=6$	$7+0=7$	$8+0=8$	$9+0=9$	$10+0=10$
$\mathbf{1}$	$0+1=1$	$1+1=2$	$2+1=3$	$3+1=4$	$4+1=5$	$5+1=6$	$6+1=7$	$7+1=8$	$8+1=9$	$9+1=10$	$10+1=11$
$\mathbf{2}$	$0+2=2$	$1+2=3$	$2+2=4$	$3+2=5$	$4+2=6$	$5+2=7$	$6+2=8$	$7+2=9$	$8+2=10$	$9+2=11$	$10+2=12$
$\mathbf{3}$	$0+3=3$	$1+3=4$	$2+3=5$	$3+3=6$	$4+3=7$	$5+3=8$	$6+3=9$	$7+3=10$	$8+3=11$	$9+3=12$	$10+3=13$
$\mathbf{4}$	$0+4=4$	$1+4=5$	$2+4=6$	$3+4=7$	$4+4=8$	$5+4=9$	$6+4=10$	$7+4=11$	$8+4=12$	$9+4=13$	$10+4=14$
$\mathbf{5}$	$0+5=5$	$1+5=6$	$2+5=7$	$3+5=8$	$4+5=9$	$5+5=10$	$6+5=11$	$7+5=12$	$8+5=13$	$9+5=14$	$10+5=15$
$\mathbf{6}$	$0+6=6$	$1+6=7$	$2+6=8$	$3+6=9$	$4+6=10$	$5+6=11$	$6+6=12$	$7+6=13$	$8+6=14$	$9+6=15$	$10+6=16$
$\mathbf{7}$	$0+7=7$	$1+7=8$	$2+7=9$	$3+7=10$	$4+7=11$	$5+7=12$	$6+7=13$	$7+7=14$	$8+7=15$	$9+7=16$	$10+7=17$
$\mathbf{8}$	$0+8=8$	$1+8=9$	$2+8=10$	$3+8=11$	$4+8=12$	$5+8=13$	$6+8=14$	$7+8=15$	$8+8=16$	$9+8=17$	$10+8=18$
$\mathbf{9}$	$0+9=9$	$1+9=10$	$2+9=11$	$3+9=12$	$4+9=13$	$5+9=14$	$6+9=15$	$7+9=16$	$8+9=17$	$9+9=18$	$10+9=19$
$\mathbf{1 0}$	$0+10=10$	$1+10=11$	$2+10=12$	$3+10=13$	$4+10=14$	$5+10=15$	$6+10=16$	$7+10=17$	$8+10=18$	$9+10=19$	$10+10=20$

* Don't forget the commutative (turn around) property. For example: $2+5=7$ and $5+2=7$.

Flashcard Maze

Materials needed:

- Flashcards
- 6 -sided die
- Game pieces

Prep:

Lay out the flashcards in a maze, face down.

To Play:

Take turns rolling the dice and moving that number of spaces on the maze. When you land on a card, turn it over and answer the problem. If you get it correct, leave the card face up. You get to stay in that place. If you get it wrong, you have to go back to where you were before you rolled.

If you land on a card that has already been turned over, you must say a problem that would have the same answer as the card where you landed. For example, if you land on " $2+3$," but it has already answered. You can say " $2+3$ $=5$, and $4+1$ also equals 5 ."

If you land on a "+ 0 card," move 2 spaces back (but do not turn over that card).
If you land on a " +10 " card move 2 more spaces forward (but do not turn over that card).

To win:

First player to complete the maze wins.

Lay out the flashcards (as many as you want) in a maze pattern.

Start

$10+0=$

$10+1=$
$10+2=$

$10+3=$

$10+4=$
$10+5=$
$10+6=$
$10+7=$
$10+8=$

$10+9=$	$10+10=$	$1+10=$
$2+10=$	$3+10=$	$4+10=$
$5+10=$	$6+10=$	$7+10=$

$8+10=$	$9+10=$	$20+1=$
$30+2=$	$40+3=$	$50+9=$
$60+8=$	$70+7=$	$80+5=$

