Addition Strategies: Make 10 First

One way to think of the numbers from 11 to 19 is to just think of them as "10 and some more." If you think of it that way, you can use your knowledge of the pairs that make 10 to figure out other facts. For example, if you want to add $7+8$, you can think of it this way: Start with the largest number, which is 8 and "make 10 first." You know that $8+2=10$. Break off 2 from the 7 and give it to the 8 to make 10. Then you have 5 left. $10+5=15$, so $7+8=15$. Here's how it looks on 10 frames:

The "Make 10 First" strategy can help you figure out numbers that add up to more than 10.

$\mathbf{+}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	
$\mathbf{0}$	$0+0=0$	$1+0=1$	$2+0=2$	$3+0=3$	$4+0=4$	$5+0=5$	$6+0=6$	$7+0=7$	$8+0=8$	$9+0=9$	$10+0=10$
$\mathbf{1}$	$0+1=1$	$1+1=2$	$2+1=3$	$3+1=4$	$4+1=5$	$5+1=6$	$6+1=7$	$7+1=8$	$8+1=9$	$9+1=10$	$10+1=11$
$\mathbf{2}$	$0+2=2$	$1+2=3$	$2+2=4$	$3+2=5$	$4+2=6$	$5+2=7$	$6+2=8$	$7+2=9$	$8+2=10$	$9+2=11$	$10+2=12$
$\mathbf{3}$	$0+3=3$	$1+3=4$	$2+3=5$	$3+3=6$	$4+3=7$	$5+3=8$	$6+3=9$	$7+3=10$	$8+3=11$	$9+3=12$	$10+3=13$
$\mathbf{4}$	$0+4=4$	$1+4=5$	$2+4=6$	$3+4=7$	$4+4=8$	$5+4=9$	$6+4=10$	$7+4=11$	$8+4=12$	$9+4=13$	$10+4=14$
$\mathbf{5}$	$0+5=5$	$1+5=6$	$2+5=7$	$3+5=8$	$4+5=9$	$5+5=10$	$6+5=11$	$7+5=12$	$8+5=13$	$9+5=14$	$10+5=15$
$\mathbf{6}$	$0+6=6$	$1+6=7$	$2+6=8$	$3+6=9$	$4+6=10$	$5+6=11$	$6+6=12$	$7+6=13$	$8+6=14$	$9+6=15$	$10+6=16$
$\mathbf{7}$	$0+7=7$	$1+7=8$	$2+7=9$	$3+7=10$	$4+7=11$	$5+7=12$	$6+7=13$	$7+7=14$	$8+7=15$	$9+7=16$	$10+7=17$
$\mathbf{8}$	$0+8=8$	$1+8=9$	$2+8=10$	$3+8=11$	$4+8=12$	$5+8=13$	$6+8=14$	$7+8=15$	$8+8=16$	$9+8=17$	$10+8=18$
$\mathbf{9}$	$0+9=9$	$1+9=10$	$2+9=11$	$3+9=12$	$4+9=13$	$5+9=14$	$6+9=15$	$7+9=16$	$8+9=17$	$9+9=18$	$10+9=19$
$\mathbf{1 0}$	$0+10=10$	$1+10=11$	$2+10=12$	$3+10=13$	$4+10=14$	$5+10=15$	$6+10=16$	$7+10=17$	$8+10=18$	$9+10=19$	$10+10=20$

* Don't forget the commutative (turn around) property. For example: $2+5=7$ and $5+2=7$.

Here are a few practice problems. Try using the "Make 10 first" strategy if you can't remember the answer automatically.

Flashcard Maze

Materials needed:

- Flashcards
- 6-sided die
- Game pieces

Prep:

Lay out the flashcards in a maze, face down.

To Play:

Take turns rolling the dice and moving that number of spaces on the maze. When you land on a card, turn it over and answer the problem. If you get it correct, leave the card face up. You get to stay in that place. If you get it wrong, you have to go back to where you were before you rolled.

If you land on a card that has already been turned over, you must say a problem that would have the same answer as the card where you landed. For example, if you land on " $2+3$," but it has already answered. You can say " $2+3=5$, and $4+1$ also equals 5 ."

If you land on a "+ 0 card," move 2 spaces back (but do not turn over that card).

If you land on a " +10 " card move 2 more spaces forward (but do not turn over that card).

To win:

First player to complete the maze wins.

Lay out the flashcards (as many as you want) in a maze pattern.

I Spy

Materials needed:

- Flash cards

Prep:

Lay out 9 flashcards in an array, face up. Put the rest of the cards in a stack face down where everyone can reach them.

To Play:

$1^{\text {st }}$ player draws a card and answers the problem. If he gets it right, he keeps the card and he looks at the array. He can pick up any other cards on the array that have the same answer as the card he drew. (Replace any picked up cards with cards from the draw stack.)

If he misses the problem, put the card back on the bottom of the draw pile.
If he accidentally picks up a card that does not have the same answer as the card he drew, he must put any cards he picked up from the array back in the array.

Player 2 does the same and so on.

To win:

First player to get 20 cards wins. Or you can play to a certain time limit or until you run out of cards - then the person with the most cards wins.

Lay out 9 flashcards in an array, face up.

Capture the Box

Addition Strategies

Materials needed:

- Capture the box gameboard
- Addition Strategies flash cards (Wellshuffled)
- Dry erase markers/erasers - different color for each player

To Play:
Place the flashcards face down in a draw pile where everyone can reach them.

Take turns doing the following:
Draw a card and answer the problem. If you get it wrong, but the card back on the bottom of the stack. If you get it right, draw a line on one side of the box that contains the answer.

If your line completes a box, that means you capture it and get to put your initials in it. If the line completes two boxes, you capture/initial both boxes.

If there are no lines you can draw with your roll, you can't play, and the next player draws.

To win:

Play until all boxes have been captured or you run out of time. The player who captures the most boxes wins.

The Great Turtle Race - Make 10 first

Materials Needed:

- Turtle Race game boards
- 6-sided die
- Dry erase boards/Markers/Erasers
- 6 "Turtles" (game counters) per player

To play:
Each Player puts a turtle (game counter) in the first space of each "lane" on his/her racing card.

Player 1 rolls the die and answers the math problem in the next available space in the lane with the number corresponding to the roll of the dice. If the answer is correct, move the turtle for that lane one space forward. Then it is player 2's turn.

AS ALWAYS: Any player who rolls the dice off the table loses a turn.
To win: First player to get 3 turtles across the finish line wins.

The Great Turtle Race

The Great Turtle Race - Make 10 first

Materials Needed:

- Turtle Race game boards
- 6-sided die
- Dry erase boards/Markers/Erasers
- 6 "Turtles" (game counters) per player

To play:
Each Player puts a turtle (game counter) in the first space of each "lane" on his/her racing card.

Player 1 rolls the die and answers the math problem in the next available space in the lane with the number corresponding to the roll of the dice. If the answer is correct, move the turtle for that lane one space forward. Then it is player 2's turn.

AS ALWAYS: Any player who rolls the dice off the table loses a turn.
To win: First player to get 3 turtles across the finish line wins.

The Great Turtle Race

$2+9=$ $3+9=$ $4+9=$ $5+9=$ $8+9=$
Addition Strategies: Make 10 First
Addition Strategies: Make 10 First
Addition Strategies: Make 10 First

