## Instructions: Wrong is right

Object of the Game: Win the most points by choosing the wrong answers.

## Materials:

- Wrong is right cards
- Special die with only 1,2,3 (or you can use a regular die and $1 \& 2$ count as $1,3 \& 4$ count as $2,5 \& 6$ count as 3 .
- Dry erase markers/erasers

To play

Place the cards in a stack, where everyone can reach them.
Lay out two cards.

First player rolls the 1-2-3 die and chooses a card. The player scratches out the number of wrong answers that correspond with the roll of the die.

- Roll a 1 - scratch out one wrong answer
- Roll a 2 - scratch out 2 wrong answers
- Roll a 3 - scratch out 3 wrong answers

Player earns one point for each wrong answer they scratch. If a player accidentally scratches out the correct answer, he/she earns no points for that round (even if they did already scratch out some wrong answers). Keep score on the dry erase board.

Play until there are no more cards or until you run out of time. The cards are two-sided so be sure to play both sides.

To win: Winner is the one with the most points at the end of the game.

Unit: $5^{\text {th }}$ - Coordinate Plane Lesson: 5.4.C - Numerical Patterns Wrong is Right


1. A pet store owner will order dog beds for his shop. The relationship between $x$, the number of boxes he will order, and $y$, the number of dog beds he will receive, can be represented by the equation $y=12 x$. Which table contains only values that represent the equation?

| A. | Dog Beds |  |
| :---: | :---: | :---: |
|  | Number of Boxes, $x$ | Number of Dog Beds, y |
|  | 3 | 36 |
|  | 6 | 72 |
|  | 9 | 108 |
|  | 15 | 180 |

B.

| Number of <br> Boxes, $\boldsymbol{x}$ | Number of <br> Dog Beds, $\boldsymbol{y}$ |
| :---: | :---: |
| 3 | 36 |
| 6 | 72 |
| 9 | 108 |
| 15 | 144 |

Dog Beds
C.

| Number of <br> Boxes, $x$ | Number of <br> Dog Beds, $\boldsymbol{y}$ |
| :---: | :---: |
| 2 | 14 |
| 6 | 18 |
| 10 | 22 |
| 14 | 26 |

.
D.
Dog Beds

| Number of <br> Boxes, $\boldsymbol{x}$ | Number of <br> Dog Beds, $\boldsymbol{y}$ |
| :---: | :---: |
| 3 | 24 |
| 6 | 36 |
| 9 | 48 |
| 15 | 60 |


2. The graph shown represents the rule $y=x+1.5$. Which table contains only values that represent the rule?
A.

| $x$ | 0 | 1 | 2 | 3 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 0 | 1.5 | 3 | 4.5 | 6 |

C.

| $x$ | 0 | 1 | 2 | 3 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 0 | 1.5 | 3 | 4.5 | 13.5 |

3. The equation $y=1.5 x$ can be used to determine $y$, the number of cups of water needed to cook $x$ cups of rice. Which table shows the relationship between $x$ and $y$ ?

Cooking Rice
A.

| Number of Cups of rice, $x$ | 9 | 11 | 13 | 15 |
| :---: | :---: | :---: | :---: | :---: |
| Number of cups of water, $y$ | 13.5 | 16.5 | 19.5 | 22.5 |

Cooking Rice
B.

| Number of Cups of rice, $x$ | 10 | 12 | 14 | 16 |
| :---: | :---: | :---: | :---: | :---: |
| Number of cups of water, $y$ | 11.5 | 13.5 | 15.5 | 17.5 |

Cooking Rice
C.

| Number of Cups of rice, $x$ | 13 | 15 | 17 | 19 |
| :---: | :---: | :---: | :---: | :---: |
| Number of cups of water, $y$ | 19.5 | 21 | 22.5 | 24 |

Cooking Rice
D.

| Number of Cups of rice, $x$ | 14 | 16 | 18 | 20 |
| :---: | :---: | :---: | :---: | :---: |
| Number of cups of water, $y$ | 14.5 | 16.5 | 18.5 | 20.5 |

4. The relationship between numbers in List $X$ and List $Y$ follows the rule $y=x+3.25$. Which diagram shows this relationship?

|  | $\underline{\text { List X }}$ |  |
| :---: | :---: | :---: |
| 29.1 | $\longrightarrow$ | $\underline{\text { List } \mathbf{Y}}$ |
| 34.1 |  | 32.35 |
| 39.1 | $\longrightarrow$ | 37.35 |
| 44.1 | $\longrightarrow$ | 42.35 |
|  |  |  |

C.

| List X |  | List $\mathbf{Y}$ <br> 29.1 |
| :---: | :---: | :---: |
| 34.1 |  | 31.15 |
| 39.1 |  | 36.15 |
| 44.1 |  | 41.15 |
|  |  | 46.15 |

B.

| List X |  | List $\mathbf{Y}$ <br> 31.15 |
| :---: | :---: | :---: |
| 33.2 |  | 33.35 |
| 35.25 | $\longrightarrow$ | 36.4 |
| 37.3 |  | 35.45 |
|  |  | 39.5 |

D.

| List $X$ <br> 31.15 |  | List $Y$ <br> 36.15 |
| :---: | :---: | :---: |
| 34.15 |  |  |
| 41.15 | $\longrightarrow$ | 39.15 |
| 46.15 | $\longrightarrow$ | 44.15 |
| 39.15 |  |  |

5. Which table represents the equation $y=3 x$ ?
A.

| $x$ | $y$ |
| :---: | :---: |
| 3 | 1 |
| 6 | 2 |
| 15 | 5 |
| 18 | 6 |

B.

| $x$ | $y$ |
| :---: | :---: |
| 1 | 1 |
| 3 | 3 |
| 5 | 5 |
| 7 | 7 |

C.

| $x$ | $y$ |
| :---: | :---: |
| 1 | 3 |
| 3 | 9 |
| 4 | 12 |
| 7 | 21 |

D.

| $x$ | $y$ |
| :---: | :---: |
| 1 | 3 |
| 4 | 9 |
| 6 | 12 |
| 7 | 18 |

6. Wanda is ordering powdered bat toes for the Witch Supply Store. The relationship between $x$, the number of boxes she will order, and $y$, the number of ounces of powdered toes she will receive, can be represented by the equation $y=8 x$. Which table contains only values that represent the equation?
A.

Powdered Bat Toes

| Number of <br> Boxes, $\boldsymbol{x}$ | Number of <br> ounces, $\boldsymbol{y}$ |
| :---: | :---: |
| 3 | 11 |
| 6 | 14 |
| 9 | 17 |
| 15 | 23 |

B. \begin{tabular}{c|c|}
\multicolumn{2}{c}{ Powdered Bat Toes } <br>

\hline | Number of |
| :--- |
| Boxes, $\boldsymbol{x}$ | \& | Number of |
| :--- |
| ounces, $\boldsymbol{y}$ | <br>

\hline 3 \& 24 <br>
\hline 6 \& 32 <br>
\hline 9 \& 40 <br>
\hline 15 \& 48 <br>
\hline
\end{tabular}

Cowdered Bat Toes

| Number of <br> Boxes, $x$ | Number of <br> ounces, $y$ |
| :---: | :---: |
| 2 | 12 |
| 6 | 36 |
| 10 | 60 |
| 14 | 84 |

D. \begin{tabular}{|c|c|}
\hline \multicolumn{2}{c}{ Powdered Bat Toes } <br>

| Number of |
| :--- |
| Boxes, $\boldsymbol{x}$ | \& | Number of |
| :--- |
| ounces, $\boldsymbol{y}$ | <br>

\hline 3 \& 24 <br>
\hline 6 \& 48 <br>
\hline 9 \& 72 <br>
\hline 15 \& 120 <br>
\hline
\end{tabular}

7. Which table of values does NOT represent $y=x+4.5$ ?
A.

| $x$ | $y$ |
| :---: | :---: |
| 1 | 5.5 |
| 2 | 6.5 |
| 3 | 7.5 |
| 5 | 9.5 |

B.

| $x$ | $\boldsymbol{Y}$ |
| :---: | :---: |
| 2 | 6.5 |
| 4 | 8.5 |
| 5 | 9.5 |
| 6 | 10.5 |

C.

| $x$ | $y$ |
| :---: | :---: |
| 4 | 18.0 |
| 5 | 22.5 |
| 6 | 27.0 |
| 9 | 40.5 |

D.

| $x$ | $y$ |
| :---: | :---: |
| 1 | 5.5 |
| 3 | 7.5 |
| 7 | 11.5 |
| 9 | 13.5 |


8. The graph shown represents the rule $y=x+2.5$. Which table contains only values that represent the rule?
A.

| $x$ | 0 | 1 | 2 | 3 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 0 | 2.5 | 4.5 | 5.5 | 9.5 |

C.

| $x$ | 0 | 1 | 2 | 3 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 0 | 1.5 | 3 | 4.5 | 8.5 |

9. The equation $y=4.5 x$ can be used to determine $y$, the number of pounds of rose petals needed to mix up, $x$, each batch of Wanda the Witch's famous Love potion. Which table shows the relationship between $x$ and $y$ ?

Mixing Love Potion
A.

| Number of batches of potion, $x$ | 9 | 11 | 13 | 15 |
| :---: | :---: | :---: | :---: | :---: |
| Number of pounds of rose petals, $y$ | 4.5 | 9 | 13.5 | 18 |

Mixing Love Potion
B.

| Number of batches of potion, $x$ | 10 | 12 | 14 | 16 |
| :---: | :---: | :---: | :---: | :---: |
| Number of pounds of rose petals, $y$ | 40 | 48 | 56 | 64 |

Mixing Love Potion
C.

| Number of batches of potion, $x$ | 4 | 6 | 8 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| Number of pounds of rose petals, $y$ | 18 | 28 | 36 | 45 |

Mixing Love Potion
D.

| Number of batches of potion, $x$ | 14 | 16 | 18 | 20 |
| :---: | :---: | :---: | :---: | :---: |
| Number of pounds of rose petals, $y$ | 35 | 40 | 45 | 50 |

10. The relationship between numbers in List $X$ and List $Y$ follows the rule $y=x+2.15$. Which diagram shows this relationship?
A.

C.

| $\underline{\text { List X }}$ |  | List $\mathbf{Y}$ <br> 29.1 |
| :---: | :---: | :---: |
| 34.1 |  | 31.15 |
| 39.1 | $\longrightarrow$ | 36.15 |
| 44.1 | $\longrightarrow$ | 41.15 |
|  |  | 46.15 |

B.

| $\underline{\text { List X }}$ |  | List Y <br> 31.15 |
| :---: | :---: | :---: |
| 33.2 | $\longrightarrow$ | 33.30 |
| 35.25 | $\longrightarrow$ | 35.35 |
| 37.3 | $\longrightarrow$ | 39.40 |

D.

| List $\mathbf{X}$ |  | List $\mathbf{Y}$ <br> 31.15 |
| :---: | :---: | :---: |
| 36.15 | $\longrightarrow$ | 29.1 |
| 41.15 | $\longrightarrow$ | 34.1 |
| 46.15 | $\longrightarrow$ | 39.1 |

11. Which table could represent the equation $y=0.2 x$ ?
A.

| $x$ | $y$ |
| :---: | :---: |
| 5 | 10 |
| 10 | 20 |
| 15 | 30 |
| 20 | 40 |
| 40 | 80 |

c.

| $x$ | $y$ |
| :---: | :---: |
| 5 | 5.2 |
| 10 | 10.2 |
| 15 | 15.2 |
| 20 | 20.2 |
| 40 | 40.2 |

B.

| $x$ | $y$ |
| :---: | :---: |
| 1 | 5 |
| 2 | 10 |
| 3 | 15 |
| 4 | 20 |
| 5 | 40 |

D.

| $x$ | $y$ |
| :---: | :---: |
| 5 | 1 |
| 10 | 2 |
| 15 | 3 |
| 20 | 4 |
| 40 | 8 |

12. Stinky Stan is ordering cases of Tennis Shoe Re-Odorizer for all of his friends. The relationship between $x$, the number of cases he will order, and $y$, the number of cans of ReOdorizer he will receive, can be represented by the equation $y=25 x$. Which table contains only values that represent the equation?

A. $\quad$\begin{tabular}{|c|c|}

\hline | Number of |
| :--- |
| cases, $\boldsymbol{x}$ | \& | Number of |
| :--- |
| cans, $\boldsymbol{y}$ | <br>

\hline 3 \& 25 <br>
\hline 6 \& 50 <br>
\hline 9 \& 75 <br>
\hline 15 \& 100 <br>
\hline
\end{tabular}

| Re-Odorizer |  |
| :--- | :---: | :---: |
| Number of <br> cases, $\boldsymbol{x}$ | Number of <br> cans, $\boldsymbol{y}$ |
| 3 | 75 |
| 6 | 150 |
| 9 | 225 |
| 15 | 375 |

C. $\quad$| Re-Odorizer |  |
| :---: | :---: |
| cases, $\boldsymbol{x}$ |  |\(\left.) \begin{array}{l}Number of <br>

cans, \boldsymbol{y}\end{array}\right]\)| 2 | 75 |
| :---: | :---: |
| 6 | 125 |
| 10 | 175 |
| 14 |  |

D.

| Number of <br> cases, $\boldsymbol{x}$ | Number of <br> cans, $\boldsymbol{y}$ |
| :---: | :---: |
| 3 | 75 |
| 6 | 100 |
| 9 | 125 |
| 15 | 200 |

13. Which table of values does NOT represent $y=x+3.5$ ?
A.

| $x$ | $y$ |
| :---: | :---: |
| 1 | 4.5 |
| 2 | 5.5 |
| 3 | 6.5 |
| 5 | 8.5 |

B.

| $x$ | $y$ |
| :---: | :---: |
| 2 | 5.5 |
| 4 | 8.5 |
| 5 | 9.5 |
| 6 | 10.5 |

C.

| $x$ | $y$ |
| :---: | :---: |
| 4 | 7.5 |
| 5 | 8.5 |
| 6 | 9.5 |
| 9 | 12.5 |

D.

| $x$ | $y$ |
| :---: | :---: |
| 1 | 4.5 |
| 3 | 6.5 |
| 7 | 10.5 |
| 9 | 12.5 |


14. The customers of a gift shop receive free stickers for every T-shirt they buy. The graph shows the relationship between $x$, the number of T-shirts customers buy and $y$, the number of stickers customers receive. Which table also represents this relationship?
A.
B.
C.
D.

| Gift Shop |  |
| :--- | :---: |
| Number <br> of T- <br> shirts <br> Bought Number <br> of Free <br> Stickers <br> 6 6 <br> 7 7 <br> 8 8 <br> 9 9 |  |

Gift Shop

| Number <br> of T- <br> shirts <br> Bought | Number <br> of Free <br> Stickers |
| :---: | :---: |
| 6 | 3 |
| 10 | 5 |
| 14 | 7 |
| 18 | 9 |

Gift Shop

| Number <br> of T- <br> shirts <br> Bought | Number <br> of Free <br> Stickers |
| :---: | :---: |
| 6 | 12 |
| 7 | 14 |
| 8 | 16 |
| 9 | 18 |

Gift Shop

| Number <br> of T- <br> shirts <br> Bought | Number <br> of Free <br> Stickers |
| :---: | :---: |
| 6 | 18 |
| 10 | 30 |
| 14 | 42 |
| 18 | 54 |


15. The ordered pairs for the points on the coordinate plane satisfy the equation $y=x+4$. Which of these tables shows other points that satisfy the equation $y=x+4$ ?
A.

| $x$ | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 9 | 10 | 11 | 12 |

B. | $x$ | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 5 | 6 | 7 | 8 |

C.

| $x$ | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 5.4 | 6.4 | 7.4 | 8.4 |

D. None of these

16. The points plotted on the coordinate grid represent the number $y=x+3$. Which table also represents this rule?
A.
B.
C.
D.

| $x$ | $y$ |
| :---: | :---: |
| 7 | 4 |
| 8 | 5 |
| 9 | 6 |
| 10 | 7 |


| $x$ | $y$ |
| :---: | :---: |
| 5 | 15 |
| 6 | 18 |
| 7 | 21 |
| 8 | 24 |


| $x$ | $y$ |
| :---: | :---: |
| 4 | 7 |
| 5 | 10 |
| 6 | 14 |
| 7 | 17 |


| $x$ | $y$ |
| :---: | :---: |
| 4 | 7 |
| 5 | 8 |
| 6 | 9 |
| 7 | 10 |

17. Which table of values does NOT represent $y=x+6.2$ ?
A.

| $x$ | $y$ |
| :---: | :---: |
| 1 | 7.2 |
| 2 | 8.2 |
| 3 | 9.2 |
| 5 | 11.2 |

B.

| $x$ | $y$ |
| :---: | :---: |
| 2 | 8.2 |
| 4 | 10.2 |
| 5 | 11.2 |
| 6 | 12.2 |

C.

| $x$ | $y$ |
| :---: | :---: |
| 4 | 10.2 |
| 5 | 11.2 |
| 6 | 12.2 |
| 9 | 15.2 |

D.

| $\boldsymbol{x}$ | $\boldsymbol{y}$ |
| :---: | :---: |
| 1 | 6.2 |
| 3 | 8.2 |
| 7 | 12.2 |
| 9 | 14.2 |


18. The graph shown represents the rule $y=x+0.5$. Which table contains only values that represent the rule?
A.

| $x$ | 0 | 1 | 2 | 3 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 0.5 | 1.5 | 2.5 | 3.5 | 9.5 |

C.

| $x$ | 0 | 1 | 2 | 3 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 0 | 1.5 | 2.5 | 3.5 | 9.5 |


19. The points plotted on the coordinate grid represent the number $y=x+5$. Which table also represents this rule?
A.
B.
C.
D.

| $x$ | $y$ |
| :---: | :---: |
| 9 | 4 |
| 11 | 6 |
| 14 | 9 |
| 20 | 15 |


| $x$ | $y$ |
| :---: | :---: |
| 5 | 10 |
| 6 | 15 |
| 7 | 20 |
| 8 | 25 |


| $x$ | $y$ |
| :---: | :---: |
| 4 | 9 |
| 5 | 10 |
| 6 | 11 |
| 7 | 12 |


| $x$ | $y$ |
| :---: | :---: |
| 4 | 20 |
| 5 | 25 |
| 6 | 30 |
| 7 | 35 |

20. The equation $y=2.5 x$ can be used to determine $y$, the number of cups of slime that Creepy Cristabelle can produce per hour, $x$, using her slime-making machine. Which table shows the relationship between $x$ and $y$ ?

Making Slime
A.

| Number of hours, $x$ | 9 | 11 | 13 | 15 |
| :---: | :---: | :---: | :---: | :---: |
| Number of cups of slime, $y$ | 18 | 22.5 | 26 | 30.5 |

Making Slime
B.

| Number of hours, $x$ | 10 | 12 | 14 | 16 |
| :---: | :---: | :---: | :---: | :---: |
| Number of cups of slime, $y$ | 12.5 | 14.5 | 16.5 | 18.5 |

Making Slime
C.

| Number of hours, $x$ | 13 | 15 | 17 | 19 |
| :---: | :---: | :---: | :---: | :---: |
| Number of cups of slime, $y$ | 26 | 30 | 34 | 38 |

Making Slime
D.

| Number of hours, $x$ | 14 | 16 | 18 | 20 |
| :---: | :---: | :---: | :---: | :---: |
| Number of cups of slime, $y$ | 35 | 40 | 45 | 50 |

21. The relationship between numbers in List $X$ and List $Y$ follows the rule $y=x+2.05$. Which diagram shows this relationship?
A.

| List X | List Y |
| :---: | :---: |
| 29.1 | 31.6 |
| 34.1 | 36.6 |
| 39.1 | 41.6 |
| 44.1 | 46.6 |

C.

| List $X$ |  | List $Y$ <br> 29.1 |
| :---: | :---: | :---: |
| 34.1 | $\longrightarrow$ | 36.15 |
| 39.1 | $\longrightarrow$ | 41.15 |
| 44.1 | $\longrightarrow$ | 46.15 |

B.

| List $\mathbf{X}$ |  | List $\mathbf{Y}$ <br> 31.15 |
| :---: | :---: | :---: |
| 33.2 | $\longrightarrow$ | 33.15 |
| 35.25 | $\longrightarrow$ | 35.2 |
| 37.3 | $\longrightarrow$ | 39.25 |

D.

| List $\mathbf{X}$ |  | List $\mathbf{Y}$ <br> 31.15 |
| :---: | :---: | :---: |
| 36.15 | $\longrightarrow$ | 29.1 |
| 41.15 | $\longrightarrow$ | 34.1 |
| 46.15 | $\longrightarrow$ | 39.1 |

22. Which table represents the equation $y=5 x$ ?
A.

| $x$ | $y$ |
| :---: | :---: |
| 5 | 1 |
| 10 | 2 |
| 25 | 5 |
| 30 | 6 |

B.

| $x$ | $y$ |
| :---: | :---: |
| 1 | 5 |
| 3 | 15 |
| 5 | 25 |
| 7 | 35 |

C.

| $x$ | $y$ |
| :---: | :---: |
| 1 | 5 |
| 3 | 8 |
| 4 | 9 |
| 7 | 12 |

D.

| $x$ | $y$ |
| :---: | :---: |
| 1 | 5 |
| 4 | 10 |
| 6 | 15 |
| 7 | 20 |

23. Which table represents the equation $y=0.5 x$ ?
A.

| $x$ | $y$ |
| :---: | :---: |
| 0.5 | 1 |
| 3 | 6 |
| 7.5 | 15 |
| 4.5 | 9 |

B.

| $x$ | $y$ |
| :---: | :---: |
| 1 | 2 |
| 3 | 6 |
| 5 | 10 |
| 7 | 15 |

C.

| $x$ | $y$ |
| :---: | :---: |
| 1 | 0.5 |
| 3 | 1.5 |
| 4 | 2 |
| 7 | 3.5 |

D.

| $x$ | $y$ |
| :---: | :---: |
| 1 | 5 |
| 4 | 20 |
| 6 | 30 |
| 7 | 35 |


24. The customers at the Pirate Emporium receive free eye patches depending on the number of talking parrots they buy. The graph shows the relationship between $x$, the number of talking parrots customers buy and $y$, the number of eye patches customers receive. Which table also represents this relationship?
A.
B.
C.
D.
Pirate Emporium

| Number <br> of Parrots <br> Bought | Number <br> of Free <br> eye <br> patches |
| :---: | :---: |
| 6 | 6 |
| 7 | 7 |
| 8 | 8 |
| 9 | 9 |

Pirate Emporium

| Number <br> of Parrots <br> Bought | Number <br> of Free <br> eye <br> patches |
| :---: | :---: |
| 2 | 1 |
| 4 | 2 |
| 6 | 3 |
| 8 | 4 |

Pirate Emporium

| Number <br> of Parrots <br> Bought | Number <br> of Free <br> eye <br> patches |
| :---: | :---: |
| 2 | 4 |
| 4 | 8 |
| 6 | 12 |
| 8 | 16 |

## Pirate Emporium

| Number <br> of Parrots <br> Bought | Number <br> of Free <br> eye <br> patches |
| :---: | :---: |
| 6 | 5 |
| 10 | 9 |
| 14 | 13 |
| 18 | 17 |

25. Which table could represent the equation $y=0.1 x$ ?

A. | $x$ | $y$ |
| :---: | :---: |
| 5 | 50 |
| 10 | 100 |
| 15 | 150 |
| 20 | 400 |
| 40 | 400 |

C.

| $x$ | $y$ |
| :---: | :---: |
| 5 | 5.1 |
| 10 | 10.1 |
| 15 | 15.1 |
| 20 | 20.1 |
| 40 | 40.1 |

B.

| $x$ | $y$ |
| :---: | :---: |
| 5 | 0.5 |
| 10 | 1.0 |
| 15 | 1.5 |
| 20 | 2.0 |
| 40 | 4.0 |

D.

| $x$ | $y$ |
| :---: | :---: |
| 5 | 0.5 |
| 10 | 0.6 |
| 15 | 0.7 |
| 20 | 0.8 |
| 40 | 1.2 |

26. A restaurant gave a bonus to employees if they brought in a successful job applicant. The relationship between the employee's original weekly pay and their paycheck including the bonus, can be represented by the equation $y=x+50$. Which table represents this relationship?
A.
Bonus Pay

| Original <br> pay, $x$ | Pay <br> including <br> bonus, $y$ |
| :---: | :---: |
| 200 | 250 |
| 285 | 300 |
| 335 | 350 |
| 420 | 400 |

B.
Bonus Pay

| Original <br> pay, $\boldsymbol{x}$ | Pay <br> including <br> bonus, $\boldsymbol{y}$ |
| :---: | :---: |
| 200 | 250 |
| 285 | 335 |
| 335 | 385 |
| 420 | 470 |

C.
Bonus Pay

| Original <br> pay, $\boldsymbol{x}$ | Pay <br> including <br> bonus, $\boldsymbol{y}$ |
| :---: | :---: |
| 200 | 250 |
| 285 | 325 |
| 335 | 365 |
| 420 | 440 |

D.
Bonus Pay

| Original <br> pay, $\boldsymbol{x}$ | Pay <br> including <br> bonus, $\boldsymbol{y}$ |
| :---: | :---: |
| 250 | 200 |
| 335 | 285 |
| 385 | 335 |
| 470 | 420 |

27. Which table contains only $x$-values and $y$-values that make the equation $y=5.2 x$ true?
A.

| $X$ | $\boldsymbol{Y}$ |
| :---: | :---: |
| 2 | 10.2 |
| 4 | 20.2 |
| 6 | 30.2 |
| 8 | 40.2 |

B.

| $\boldsymbol{X}$ | $\boldsymbol{Y}$ |
| :---: | :---: |
| 10.2 | 2 |
| 20.2 | 4 |
| 30.2 | 6 |
| 40.2 | 8 |

C.

| $\boldsymbol{X}$ | $\boldsymbol{Y}$ |
| :---: | :---: |
| 3 | 15.6 |
| 5 | 26 |
| 7 | 36.4 |
| 9 | 46.8 |

D.

| $\boldsymbol{X}$ | $\boldsymbol{Y}$ |
| :---: | :---: |
| 3 | 8.2 |
| 5 | 10.2 |
| 7 | 12.2 |
| 9 | 14.2 |


28. The ordered pairs for the points on the coordinate plane satisfy the equation $y=x+3$. Which of these tables shows other points that satisfy the equation $y=x+3$ ?

A. | $x$ | 4 | 7 | 10 | 13 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 6 | 9 | 12 | 15 |

B. | $x$ | 9 | 12 | 15 | 18 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 12 | 15 | 18 | 21 |

C.

| $x$ | 12 | 15 | 18 | 21 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 9 | 12 | 15 | 18 |

D. None of these
29. Students earned extra points on a science test for correctly answering a bonus question. The relationship between the student's original test score and their final test score, including the extra points, can be represented by the equation $y=x+25$. Which table represents this relationship?
A.
Science Test

| Original <br> test score, $\boldsymbol{x}$ | Final test <br> score, $\boldsymbol{y}$ |
| :---: | :---: |
| 65 | 90 |
| 70 | 95 |
| 78 | 103 |
| 85 | 110 |

B.
Science Test

| Original <br> test score, $\boldsymbol{x}$ | Final test <br> score, $\boldsymbol{y}$ |
| :---: | :---: |
| 72 | 97 |
| 80 | 105 |
| 83 | 98 |
| 91 | 106 |

C.
Science Test

| Original <br> test score, $\boldsymbol{x}$ | Final test <br> score, $\boldsymbol{y}$ |
| :---: | :---: |
| 70 | 45 |
| 79 | 54 |
| 81 | 56 |
| 85 | 60 |

D.
Science Test

| Original <br> test score, $\boldsymbol{x}$ | Final test <br> score, $\boldsymbol{y}$ |
| :---: | :---: |
| 70 | 25 |
| 80 | 50 |
| 90 | 75 |
| 100 | 100 |

30. Which table contains only $x$-values and $y$-values that make the equation $y=4.8 x$ true?
A.

| $\boldsymbol{X}$ | $\boldsymbol{Y}$ |
| :---: | :---: |
| 2 | 9.6 |
| 4 | 19.2 |
| 6 | 28.8 |
| 8 | 38.4 |

B.

| $\boldsymbol{X}$ | $\boldsymbol{Y}$ |
| :---: | :---: |
| 2 | 4.8 |
| 4 | 9.6 |
| 6 | 14.4 |
| 8 | 19.2 |

C.

| $\boldsymbol{X}$ | $\mathbf{Y}$ |
| :---: | :---: |
| 3 | 7.8 |
| 5 | 9.8 |
| 7 | 11.8 |
| 9 | 13.8 |

D.

| $\boldsymbol{X}$ | $\boldsymbol{Y}$ |
| :---: | :---: |
| 3 | 14.4 |
| 5 | 19.2 |
| 7 | 24.0 |
| 9 | 28.8 |

31. The equation $y=0.5 x$ can be used to determine $y$, the number of cups of possum fur that Disgusting Donald needs per serving, $x$, of his famous Fur \& Toenail Soup. Which table shows the relationship between $x$ and $y$ ?

Fur \& Toenail Soup
A.

| Number of servings of soup, $x$ | 9 | 11 | 13 | 15 |
| :---: | :---: | :---: | :---: | :---: |
| Number of cups of fur, $y$ | 9.5 | 11.5 | 13.5 | 15.5 |

Fur \& Toenail Soup
B.

| Number of servings of soup, $x$ | 10 | 12 | 14 | 16 |
| :---: | :---: | :---: | :---: | :---: |
| Number of cups of fur, $y$ | 50 | 60 | 70 | 80 |

Fur \& Toenail Soup
C.

| Number of servings of soup, $x$ | 13 | 15 | 17 | 19 |
| :---: | :---: | :---: | :---: | :---: |
| Number of cups of fur, $y$ | 6.5 | 7.5 | 8.5 | 9.5 |

Fur \& Toenail Soup
D.

| Number of servings of soup, $x$ | 14 | 16 | 18 | 20 |
| :---: | :---: | :---: | :---: | :---: |
| Number of cups of fur, $y$ | 3.5 | 4 | 4.5 | 5 |


32. The graph shown represents the rule $y=x+3.5$. Which table contains only values that represent the rule?
A.

| $x$ | 0 | 1 | 2 | 3 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 3.5 | 4.5 | 5.5 | 6.5 | 12.5 |

C.

| $x$ | 0 | 1 | 2 | 3 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 0 | 3.5 | 7 | 10.5 | 31.5 |

